skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Magazzeni, Daniele"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There is an emerging interest in generating robust algorithmic recourse that would remain valid if the model is updated or changed even slightly. Towards finding robust algorithmic recourse (or counterfactual explanations), existing literature often assumes that the original model m and the new model M are bounded in the parameter space, i.e., ||Params(M)−Params(m)||<Δ. However, models can often change significantly in the parameter space with little to no change in their predictions or accuracy on the given dataset. In this work, we introduce a mathematical abstraction termed naturally-occurring model change, which allows for arbitrary changes in the parameter space such that the change in predictions on points that lie on the data manifold is limited. Next, we propose a measure – that we call Stability – to quantify the robustness of counterfactuals to potential model changes for differentiable models, e.g., neural networks. Our main contribution is to show that counterfactuals with sufficiently high value of Stability as defined by our measure will remain valid after potential “naturally-occurring” model changes with high probability (leveraging concentration bounds for Lipschitz function of independent Gaussians). Since our quantification depends on the local Lipschitz constant around a data point which is not always available, we also examine estimators of our proposed measure and derive a fundamental lower bound on the sample size required to have a precise estimate. We explore methods of using stability measures to generate robust counterfactuals that are close, realistic, and remain valid after potential model changes. This work also has interesting connections with model multiplicity, also known as the Rashomon effect. 
    more » « less